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Abstract 

We prove that the functor taking a i&,-algebra R to the set of homomorphisms of p-typical 
formal group laws over R is represented by the ring of additive unstable BP-cooperations. This 
is analogous to a result of Landweber concerning stable BP-cooperations and strict isomor- 
phisms of formal groups. Using this point of view we are able to reproduce the formulae of 
Boardman-Johnson-Wilson describing the additional structure in QBP,BP2,. Finally we 
discuss the set of multiplicative additive unstable BP-operations and give a characterisation in 
terms of homomorphisms of formal group laws. 

1991 Math. Subj. Class.: 55N22, 55825 

1. Introduction 

Unstable cohomology operations have received considerable attention in recent 
times and now have a firm grounding in the work of Boardman et al. [3] where 
a comprehensive study of the structure of unstable algebras is presented. This and the 
Ravenel-Wilson calculation of the Hopf ring for complex cobordism [S] provide the 
background for the current work. We begin by summarising what we need. Let BPzk 

be the 2kth space in the Q-spectrum associated to the Brown-Peterson spectrum BP. 

We have BP*-modules. 

BP*BP = stable BP-cohomology operations, 
BP*BP2* = even unstable BP-cohomology operations, 
PBP*BP2, = even additive unstable BP-cohomology operations. 
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Here PBP*BP,, consists of the primitive elements of BP*BP2,. We can also 
consider BP-homology and there are strong duality isomorphisms 

BP*BP = ModBp,(BP,BP, BP,), 

BP*BP2, = ModBp,(BP,BP2*, BP,), 

PBP*BP2, = ModBp*(QBP,BP2*, BP,), 

where QBP,BP2, is the module of indecomposables in BP,BP2,. In what follows we 
regard QBP.$P2, as a ZCpj- algebra, the product coming from the Hopf ring circle 
product in BP,BP2,. 

Let R be a Z(,,,-algebra and let 

TF(R) = the set of p-typical formal group laws over R, 

TI(R) = the set of triples (F,f, G) where F, G E TF(R) and 

f is a strict isomorphism from F to G, 

TH(R) = the set of triples (F,f, G) where F, G E TF(R) and 
f is a homomorphism from F to G. 

The following statements are about ungraded Z&-algebras. Let ~2 be the category 
of Ze,-algebras and let Y be the category of sets. 

Theorem 1.1. (Araki Cl]). The functor TF: d + 9’ is represented by the Ztpj- 
algebra BP,. 

Theorem 1.2. (Landweber [4]). The functor TI : d + Y is represented by the ZCpj- 
algebra BP,BP. 

Our main theorem is: 

Theorem 1.3. The jiinctor TH : d --) Sp is represented by the I&,-algebra QBP$P,, . 

We proceed to show that there are certain natural transformations giving rise to the 
usual additional structure maps of QBPJSP,,. Using this point of view we can 
reproduce the explicit formulae of [3] describing these maps. This allows us to 
rephrase Theorem 1.3 in terms of a functor taking values in a richer category. We note 
that the natural transformation 

TI + TH 

including strict isomorphisms into homomorphisms, corresponds to the inclusion 

&zCpl(BP,BP,R) = &.zcpl(QBRt.B&,, R) 

induced by the stabilisation map 

s: QBP,BP2, + BP,BP. 
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We end with a discussion of multiplicative additive unstable BP-operations. A more 
general framework for these results is planned in joint work with Neil Strickland. 

2. The algebra QBP,BP2, and the proof of Theorem 1.3 

The algebra QBP,BP2, was understood by Ravenel and Wilson [S] (see also [3]). 

Let -4,,2* be the free BP,[BP*]-Hopf ring on elements {bi} for i 2 0 with lbil = 2i 

and bo = 1 and with coproduct $(bi) = Cm+” = i b, 0 b,. Ravenel and Wilson show 

that the Hopf rmg BP,BP2, is a certain quotient of A,,2*. On passing to the 
indecomposable quotient we find that A,,2* has the structure of a commutative 

BP*-algebra and a BP*-bimodule. The canonical map (see [S]) A*,2* + BPfiP2, 
induces a surjective BP*-algebra homomorphism between indecomposable quotients 

P :Q4,2, + QBP,BP2,. 

Recall BP, = BP-* = Zcpj[vl, u2, . . . ] with IUil = 2(p’ - 1). For o E BP’ write [u] 
for [u] - [Oil E QBP*BPiu We wish to consider A*,2* and BP,BP2, as Zo,,-algebras 
and we define B c A*,2* to be the sub-algebra generated by the elements bi, so 

B = &,,Cb,, bz, . . . 1. By observing that QBP,[BP*] E BP, c&~,, BP* we can write 

QA *,2e = BP, @ B @ BP*. 

Here the BP, on the left corresponds to the elements Ui and the BP* on the right to the 

elements [Vi]. All tensor products are taken over Z(,,). Consider now the formal power 
series ring BP, 0 B 0 BP*[s, tl]. As usual we write b(s) = C his’. By slight, but 
obvious, abuse of notation we can consider the following elements in the above formal 
power series ring. 

b 1 ai,jdtj Q 1 
( > 

(2.1) 

and 

1 @ 1 ai,jb(s)‘b(t)‘, (2.2) 

where we are writing the universal p-typical formal group law PBp as 
P”r+, y) = C ai,jxi_$. The above elements could then also be (suggestively) written as 

b(&,(s, t)) 0 1 

and 

18 P,,@(s)> b(t)). 

The coefficient of s’tj in the difference 

(b(~ai,jsit’)~l)(l~~ai,jb(s)‘b(t)’) 
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gives an element of BP, @ B 0 BP*. Let I c BP, @ B @I BP* be the ideal generated 
by these elements. The following is a reformulation of a result in [3]. 

Lemma 2.1. 

QBP,BP2, =BBP,OBQBP*/I. 

Proof. The ideal I can be identified with the kernel of the canonical map 

p: BP,.BQBP* =QA,,2* + QBP,BP2, 

by appealing to the main result in [S] and observing that (2.1) and (2.2) above are the 
reduction to indecomposable quotients of the elements used by Ravenel and Wilson 
to get their main relation. 0 

We are now in a position to prove Theorem 1.3. 

Proof of Theorem 1.3. We construct a set theoretic map 

@: Ab,,,(QBf',Bh+c,W + TWW 

and show this to be bijection. First note that the map 

P* :&z,,,(Q%B&.~ N --f AbzJQA*,~w R) = AZg,,JBP, 0 B 0 BP*,R) 

injects since p is a surjection and AZgz,p,( - , R) is a contravariant right exact functor. 
Now, homomorphisms of i&-algebras 

BP, +R 

are in one-to-one correspondence with p-typical formal group laws over R and 
homomorphisms of ?&,-algebras 

B+R 

are in one-to-one correspondence with power series xi z I a$ E R[x]. This last corres- 
pondence associates C$ : B + R with Ci 2 1 4(bi)x’ E Rex]. 

Let 0~ A&,,(QBP,BP2,, R) and define FB(x, y) to be the p-typical formal group 
law corresponding to 

P*4 BP,~~ICGI:BP* + R, 

define G&, y) to be the p-typical formal group law corresponding to 

P*4 IB~~MP*:BP* + R 

and define&(x) to be the power series corresponding to 

P*eI I~BBI:B + R. 
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We now define the map 

by 

~++(Fo,h Go). 

We first check that @ is well defined. To see this consider the map of formal power 
series rings 

BP, @ B 8 BP*/I[s, t] --t R [s, t] 

induced by 19 E A1gz,P,(QBP,BP2,, R). It is clear from the above descriptions that 
under this map 

b(&& r)) 0 1 Hfe(F&, t)) 

and 

10 &4b(s), b(t))- Ge(fe(s),fe(r)). 

Now the two elements on the left are equal sofe(F&, t) = G&&)&,(t)) in R[s, t], 
showingf, is indeed a homomorphism between Fe and GO. 

Next we show @ is injective. Let 6i, O2 E AZgzcli(QBP,BP2,, R) and suppose 
(FOX&, GO,) = (Fez&,, GO,). Then by definition p*(O,) = p*(&), but p* is injective so 
e1 = 8,. 

Finally we show @ is surjective. Let (F,f, G) be a triple in TH(R) and let 

&:BP, + R, 

c$/:B + R, 

and 

&:BP, -+ R 

be the maps representing F,f, and G. Construct the map 

@BP,QB@BP*=RQR@R --f R 

and claim it factors through QBP,BP2,. It suffices to show the ideal 
I c BP, @ B 0 BP* is in the kernel. We do this by showing that 

@(&J&Y t)) @ l) - (l @ F,@(s), b(t))) 

is in the kernel of the induced map of formal power series rings 
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Now 

MWI& t)) 6 1) - (10 F,,(W), b(t)))) =f(F(s, t)) - W-(s),f(t)) = 0 

since f is a homomorphism of formal groups. This completes the proof of the 
theorem. 0 

Remark 2.2. All of the above can be done for MU by replacing ‘&,-algebra by 
‘commutative ring’, ‘p-typical formal group’ by ‘formal group’ and ‘BP’ by ‘MU’. 

3. Structure maps 

In [3] one can find a description of all the additional structure present in 

QBPP’z,. Explicit formulae are given for the left and right units qL and qR, the 
counit, E and the coproduct t,G. We show how to reproduce these in the spirit of 
Landweber from the above point of view. We can define natural maps: 

VL:TH(W + TWO (F, 4, G)-F, 

VR: TWO + WR) (F,$, G)- G 

E: TF(R) + KY(R) F H (F, id, F), 

$ : TH’(R) + TH(R) ((F, 4, G), (G, 6 WI H (F, 04, HI, 

turning the pair (TF, TH) into a semi-groupoid. (This is just a fancy name for a small 
category, but we stick with it to keep in line with our other objects.) Here TIT’(R) is 
defined to be the set {(F,f, G) x (F’,f’, G’) E TH(R) x TH(R) 1 G = F’}. The above 
maps give us homomorphisms: 

VL: BP, + QBP,BPz,, 

vu : BP, -+ QBP,BPz,, 

E: QBP,BPz, + BP,, 

$1 QBP,BPz* + QBP,BPz, 63 QBP,BP,,, 

turning (BP,, QBP,BP2*) into a Hopf semi-algebroid over ZCP), i.e. a semi-groupoid 
in the category of i&,,-coalgebras. 

Proposition 3.1 (Boardman et al. [3]). Explicit formulae for the structure maps in 
QBP$P,, are given by 

VL(vi) = vi3 (34 

qR(vi) = [vi], (3.2) 

E(1) = 1, (3.3) 
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&(bi) = 0 for i > 0, (3.4) 

&(Ui) = Uip (3.5) 

HCvil) = vi, (3.6) 

,z, $(bk)xk = C 
it1 

(3.7) 

This last formula is to be thought of as a formal power series equality in the formal 
variable x. In the usual way the coefficients of x give the desired result. 

Proof. To prove (3.1) observe that qL must satisfy the following property. If 

Fe Qfe 0 Go : QBP,BPz, -+R 

represents (F,f; G) E TH(R), then 

(Fo Oh Q GB)o~L:BP*QBP*BP~* + R 

represents F. It is clear that the left inclusion satisfies this condition, proving (3.1). 
The proof of (3.2) is similar. 
To prove (3.3)-(3.6) observe that E must satisfy the following. If FO: BP, + R 

represents F E TF(R) then FB 0 E : QBP,BP2, + BP, + R represents (F, id, F). So we 

must have F,oC(Ui) = Fo(Ui) and FoOE([Vi]) = F,(Ui) and F,os(l) = 1 and 
Fgo~(bi) = 0 for i > 0. Eqs. (3.3)-(3.6) now follow. 

To prove (3.7) observe that $ must satisfy the following. If 

(Fe Oh 0 Go) Q (Go 0 ge 8 Ho) : QBP,BP2, Q QBP,BPz, + R 

represents ((F,f, G), (G, g, H)) E TH’(R) then 

ttF;e Qfe 0 Go) 0 (Ge Q ge Q Ho)) o ti : QBPdf’z, + R 

represents (F, d, G). Take R to be QBP,BP,, 63 QBP,BP2, and take 

Fe Ofe 8 Go : QBP,BP,, + R = QBP,BPz, 6 QBP,BP,, 

to be the left inclusion (SO f (x) = '&> o (bi @I 1)x’) and take 

Go @ ge @ Ho 1 QBPqBP2, + R = QBP,BP2,0 QBP*BPz* 

to be the right inclusion (so g(x) = cj z 0 1 @ bjd). In this case 
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and so $ represents (F, d, G). In particular from the definition of the power series af 
we have 

d(x) = c (CZMW’ (3.8) 
i20 

= iFo ICICbilx’. (3.9) 

However, 

@-f(x) = &Ox)) (3.10) 

= jzo l@ bj(f(x)Y 

= jJIo (iFo bixi)j @ b.iT 

giving the result. 0 

(3.11) 

(3.12) 

In view of the above discussion we can combine Theorems 1.1 and 1.3 to give the 
following. 

Theorem 3.2. The jiinctor taking the Ze,-algebra R to the semi-groupoid 
(TF(R), TH(R)) is represented by the Hopf semi-algebroid (BP,,QBP,BP&. 

It is clear from the above and from Landweber’s results on BP,BP that the natural 
transformation 

TI + TH 

given by the inclusion 

TI(R)c, TH(R) 

of strict isomorphism into homomorphisms, is induced by the stabilisation map 
QBP,BP2, + BP,BP. Using the extra structure on QBP,BP2, and BP,BP we see 
that the inclusion 

(TW), TM)) -(TWO TWO) 

is a map of semi-groupoids and so the stabilisation map is a map of Hopf semi- 
algebroids. This gives an alternative proof of the result in [3] that the stabilisation 
map is a map of BP,-bimodules. 

4. Multiplicative additive operations 

Araki [2] has shown there is a bijection between the set of multiplicative stable 
BP-operations, MuZt(BP), and certain typical curves over FBp. The most convenient 
form of his result for the present context is as follows. 
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Theorem 4.1. (Araki [Z]). There is a one-to-one correspondence 

MuZt(BP) = {(F,f, G) E TI(BP,) I F = Fsp}. 

We shall extened this result to the unstable case. Given an additive unstable 
operation 8: BPk( - ) + BPk(-) we shall write O1 for the looped operation 
Qk-‘e: BPk-I(-) + BPk-‘(-). 

Definition 4.2. An additive unstable operation 8: BPk(-) + BPk(-) is said to be 
multiplicative if O(Xy) = Oj(X)fli(Y) f or x E BP’(X) and y E BPj(X) with i + j = k. Let 
UMult(BP) c PBP*BP*, be the set of all such operations. 

Recall that PBP*BP2, comes equipped with a coproduct rjO given by 
&,(e) = &+j=&(e) where @:BP*(BP,) + BP*(BPi x BP,) is induced from the 
map BP, x BPj + BP, coming from the ring structure in BP. 

Lemma 4.3. 

UMult(BP) = (6’ E PBP*BP2, I t,b&l) = 1 8jO Oi}. 
i+j=k 

Proof. The coproduct condition is equivalent to demanding that +2’(O) = ej@ Bi for 
all i + j = k. In other words the following diagram commutes: 

BP, X BPj ~ BP, 

BPi X BPj ~ BP, 

This is precisely the diagram needed to show B(xy) = Oj(x)Oi(y). 0 

We can now characterise UMult(BP) in terms of formal group law homomor- 
phisms as follows. 

Proposition 4.4. There is a one-to-one correspondence 

UMuZt(BP) = {(F,f, G) E TH(BP,) 1 F = FBP}. 

Proof. Consider the set AZg,,*(QBP,BP2,, BP,) of (left) algebra homomorphisms 
from QBP,BP2, to BP,. By definition this is the set of 0 E ModBps(QBP$P2,, BP,) 
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such that there is commutative diagram 

QBP,BP2, @ QBP,BPz, -!=+ BP, @ BP* 

1 

BP,BPz, 

Using the duality Modsp*(QBP,BP2,, BP,) = PBP*BP2, we can interpret 8 as an 
element of PBP*BP2,. As such, the above diagram is equivalent to the condition 
$O(O) = ‘&+j=kOj @ 8i; thus by Lemma 4.3 there is a one-to-one correspondence 

UMult(BP) 1: AlgBP,(QBP*BP2*, BP,). 

It is clear, however, from Theorem 1.3 that Alg,pa(QBP,BP2*, BP,) is in one-to-one 
correspondence with the given subset of TH(BP,). 0 
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