

Journal of Pure and Applied Algebra 110 (1996) 91-100

JOURNAL OF PURE AND APPLIED ALGEBRA

Unstable BP-operations and typical formal groups

Paul R. Turner

Mathematisches Institut der Universität, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany

Communicated by A. Dold; received 15 October 1994

Abstract

We prove that the functor taking a $\mathbb{Z}_{(p)}$ -algebra R to the set of homomorphisms of p-typical formal group laws over R is represented by the ring of additive unstable BP-cooperations. This is analogous to a result of Landweber concerning stable BP-cooperations and strict isomorphisms of formal groups. Using this point of view we are able to reproduce the formulae of Boardman-Johnson-Wilson describing the additional structure in QBP_*BP_{2*} . Finally we discuss the set of multiplicative additive unstable BP-operations and give a characterisation in terms of homomorphisms of formal group laws.

1991 Math. Subj. Class.: 55N22, 55S25

1. Introduction

Unstable cohomology operations have received considerable attention in recent times and now have a firm grounding in the work of Boardman et al. [3] where a comprehensive study of the structure of unstable algebras is presented. This and the Ravenel–Wilson calculation of the Hopf ring for complex cobordism [5] provide the background for the current work. We begin by summarising what we need. Let BP_{2k} be the 2kth space in the Ω -spectrum associated to the Brown–Peterson spectrum BP. We have BP^* -modules.

 BP^*BP = stable *BP*-cohomology operations, BP^*BP_{2*} = even unstable *BP*-cohomology operations, PBP^*BP_{2*} = even additive unstable *BP*-cohomology operations.

^{*}Current Address: Max-Planck-Institut fur Mathematik, Gottfried-Claren-Strasse 26, D-53225 Bonn, Germany. E-mail: turner@mpim-bonn.mpg.de.

Here $PBP*BP_{2*}$ consists of the primitive elements of $BP*BP_{2*}$. We can also consider *BP*-homology and there are strong duality isomorphisms

 $BP^*BP = Mod_{BP_*}(BP_*BP, BP_*),$ $BP^*BP_{2*} = Mod_{BP_*}(BP_*BP_{2*}, BP_*),$ $PBP^*BP_{2*} = Mod_{BP_*}(QBP_*BP_{2*}, BP_*),$

where QBP_*BP_{2*} is the module of indecomposables in BP_*BP_{2*} . In what follows we regard QBP_*BP_{2*} as a $\mathbb{Z}_{(p)}$ -algebra, the product coming from the Hopf ring circle product in BP_*BP_{2*} .

Let R be a $\mathbb{Z}_{(p)}$ -algebra and let

TF(R) = the set of *p*-typical formal group laws over R,

- TI(R) = the set of triples (F, f, G) where $F, G \in TF(R)$ and f is a strict isomorphism from F to G,
- TH(R) = the set of triples (F, f, G) where $F, G \in TF(R)$ and f is a homomorphism from F to G.

The following statements are about ungraded $\mathbb{Z}_{(p)}$ -algebras. Let \mathscr{A} be the category of $\mathbb{Z}_{(p)}$ -algebras and let \mathscr{S} be the category of sets.

Theorem 1.1. (Araki [1]). The functor $TF: \mathscr{A} \to \mathscr{S}$ is represented by the $\mathbb{Z}_{(p)}$ -algebra BP_* .

Theorem 1.2. (Landweber [4]). The functor $TI: \mathscr{A} \to \mathscr{S}$ is represented by the $\mathbb{Z}_{(p)}$ -algebra BP_*BP .

Our main theorem is:

Theorem 1.3. The functor $TH: \mathscr{A} \to \mathscr{S}$ is represented by the $\mathbb{Z}_{(p)}$ -algebra QBP_*BP_{2*} .

We proceed to show that there are certain natural transformations giving rise to the usual additional structure maps of QBP_*BP_{2*} . Using this point of view we can reproduce the explicit formulae of [3] describing these maps. This allows us to rephrase Theorem 1.3 in terms of a functor taking values in a richer category. We note that the natural transformation

 $TI \rightarrow TH$

including strict isomorphisms into homomorphisms, corresponds to the inclusion

$$Alg_{\mathbb{Z}_{(p)}}(BP_{*}BP, R) \subset Alg_{\mathbb{Z}_{(p)}}(QBP_{*}BP_{2*}, R)$$

induced by the stabilisation map

 $s: QBP_*BP_{2*} \rightarrow BP_*BP.$

92

We end with a discussion of multiplicative additive unstable *BP*-operations. A more general framework for these results is planned in joint work with Neil Strickland.

2. The algebra QBP_*BP_{2*} and the proof of Theorem 1.3

The algebra QBP_*BP_{2*} was understood by Ravenel and Wilson [5] (see also [3]). Let $A_{*,2*}$ be the free $BP_*[BP^*]$ -Hopf ring on elements $\{b_i\}$ for $i \ge 0$ with $|b_i| = 2i$ and $b_0 = 1$ and with coproduct $\psi(b_i) = \sum_{m+n=i} b_m \otimes b_n$. Ravenel and Wilson show that the Hopf ring BP_*BP_{2*} is a certain quotient of $A_{*,2*}$. On passing to the indecomposable quotient we find that $A_{*,2*}$ has the structure of a commutative BP^* -algebra and a BP^* -bimodulc. The canonical map (scc [5]) $A_{*,2*} \rightarrow BP_*BP_{2*}$ induces a surjective BP^* -algebra homomorphism between indecomposable quotients

 $\rho : QA_{*,2*} \rightarrow QBP_*BP_{2*}.$

Recall $BP_* = BP^{-*} = \mathbb{Z}_{(p)}[v_1, v_2, ...]$ with $|v_i| = 2(p^i - 1)$. For $v \in BP^i$ write $\overline{[v]}$ for $[v] - [0_i] \in QBP_*BP_i$. We wish to consider $A_{*,2*}$ and BP_*BP_{2*} as $\mathbb{Z}_{(p)}$ -algebras and we define $B \subset A_{*,2*}$ to be the sub-algebra generated by the elements b_i , so $B = \mathbb{Z}_{(p)}[b_1, b_2, ...]$. By observing that $QBP_*[BP^*] \cong BP_* \otimes_{\mathbb{Z}_{(p)}} BP^*$ we can write

 $QA_{*,2*} = BP_* \otimes B \otimes BP^*.$

Here the BP_* on the left corresponds to the elements v_i and the BP^* on the right to the elements $\overline{[v_i]}$. All tensor products are taken over $\mathbb{Z}_{(p)}$. Consider now the formal power series ring $BP_* \otimes B \otimes BP^*[[s, t]]$. As usual we write $b(s) = \sum b_i s^i$. By slight, but obvious, abuse of notation we can consider the following elements in the above formal power series ring.

$$b\left(\sum a_{i,j}s^it^j\right) \otimes 1 \tag{2.1}$$

and

$$1 \otimes \sum a_{i,j} b(s)^i b(t)^j, \tag{2.2}$$

where we are writing the universal *p*-typical formal group law F_{BP} as $F_{BP}(x, y) = \sum a_{i,j} x^i y^j$. The above elements could then also be (suggestively) written as

 $b(F_{BP}(s,t)) \otimes 1$

and

$$1 \otimes F_{BP}(b(s), b(t)).$$

The coefficient of $s^i t^j$ in the difference

$$\left(b\left(\sum a_{i,j}s^{i}t^{j}\right)\otimes 1\right)-\left(1\otimes\sum a_{i,j}b(s)^{i}b(t)^{j}\right)$$

gives an element of $BP_* \otimes B \otimes BP^*$. Let $I \subset BP_* \otimes B \otimes BP^*$ be the ideal generated by these elements. The following is a reformulation of a result in [3].

Lemma 2.1.

 $QBP_*BP_{2*} \cong BP_* \otimes B \otimes BP^*/I.$

Proof. The ideal I can be identified with the kernel of the canonical map

 $\rho: BP_* \otimes B \otimes BP^* = QA_{*,2*} \to QBP_*BP_{2*}$

by appealing to the main result in [5] and observing that (2.1) and (2.2) above are the reduction to indecomposable quotients of the elements used by Ravenel and Wilson to get their main relation. \Box

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. We construct a set theoretic map

$$\Phi: Alg_{\mathbb{Z}_{*}}(QBP_{*}BP_{2*}, R) \to TH(R)$$

and show this to be bijection. First note that the map

$$\rho^* : Alg_{\mathbb{Z}_{(n)}}(QBP_*BP_{2*}, R) \to Alg_{\mathbb{Z}_{(n)}}(QA_{*,2*}, R) = Alg_{\mathbb{Z}_{(n)}}(BP_* \otimes B \otimes BP^*, R)$$

injects since ρ is a surjection and $Alg_{\mathbb{Z}_{(p)}}(-, R)$ is a contravariant right exact functor. Now, homomorphisms of $\mathbb{Z}_{(p)}$ -algebras

 $BP_* \rightarrow R$

are in one-to-one correspondence with *p*-typical formal group laws over *R* and homomorphisms of $\mathbb{Z}_{(p)}$ -algebras

 $B \rightarrow R$

are in one-to-one correspondence with power series $\sum_{i \ge 1} a_i x^i \in R[[x]]$. This last correspondence associates $\phi: B \to R$ with $\sum_{i \ge 1} \phi(b_i) x^i \in R[[x]]$.

Let $\theta \in Alg_{\mathbb{Z}_{(p)}}(QBP_{*}BP_{2*}, R)$ and define $F_{\theta}(x, y)$ to be the *p*-typical formal group law corresponding to

 $\rho^*\theta|_{BP_*\otimes 1\otimes 1}:BP_*\to R,$

define $G_{\theta}(x, y)$ to be the *p*-typical formal group law corresponding to

$$\rho^*\theta|_{1\otimes 1\otimes BP^*}:BP^*\to R,$$

and define $f_{\theta}(x)$ to be the power series corresponding to

 $\rho^*\theta|_{1\otimes B\otimes 1}:B\to R.$

We now define the map

$$\Phi: Alg_{\mathbb{Z}_{(p)}}(QBP_{*}BP_{2*}, R) \to TH(R)$$

by

$$\theta \mapsto (F_{\theta}, f_{\theta}, G_{\theta}).$$

We first check that Φ is well defined. To see this consider the map of formal power series rings

$$BP_* \otimes B \otimes BP^*/I[[s, t]] \to R[[s, t]]$$

induced by $\theta \in Alg_{\mathbb{Z}_{(p)}}(\mathbb{Q}BP_{*}BP_{2*}, R)$. It is clear from the above descriptions that under this map

$$b(F_{BP}(s,t)) \otimes 1 \mapsto f_{\theta}(F_{\theta}(s,t))$$

and

$$1 \otimes F_{BP}(b(s), b(t)) \mapsto G_{\theta}(f_{\theta}(s), f_{\theta}(t)).$$

Now the two elements on the left are equal so $f_{\theta}(F_{\theta}(s, t) = G_{\theta}(f_{\theta}(s), f_{\theta}(t))$ in R[[s, t]], showing f_{θ} is indeed a homomorphism between F_{θ} and G_{θ} .

Next we show Φ is injective. Let $\theta_1, \theta_2 \in Alg_{\mathbb{Z}_{(p)}}(QBP_*BP_{2*}, R)$ and suppose $(F_{\theta_1}, f_{\theta_1}, G_{\theta_1}) = (F_{\theta_2}, f_{\theta_2}, G_{\theta_2})$. Then by definition $\rho^*(\theta_1) = \rho^*(\theta_2)$, but ρ^* is injective so $\theta_1 = \theta_2$.

Finally we show Φ is surjective. Let (F, f, G) be a triple in TH(R) and let

$$\phi_F \colon BP_* \to R,$$

$$\phi_f \colon B \to R,$$

and

 $\phi_G: BP_* \rightarrow R$

be the maps representing F, f, and G. Construct the map

$$\phi: BP_* \otimes B \otimes BP^* \xrightarrow{\phi_F \otimes \phi_f \otimes \phi_\sigma} R \otimes R \otimes R \to R$$

and claim it factors through QBP_*BP_{2*} . It suffices to show the ideal $I \subset BP_* \otimes B \otimes BP^*$ is in the kernel. We do this by showing that

$$(b(F_{BP}(s,t))\otimes 1) - (1\otimes F_{BP}(b(s),b(t)))$$

is in the kernel of the induced map of formal power series rings

$$\phi: BP_* \otimes B \otimes BP^*[[s, t]] \xrightarrow{\phi_r \otimes \phi_j \otimes \phi_a} R \otimes R \otimes R[[s, t]] \to R[[s, t]].$$

Now

$$\phi((b(F_{BP}(s,t)) \otimes 1) - (1 \otimes F_{BP}(b(s),b(t)))) = f(F(s,t)) - G(f(s),f(t)) = 0$$

since f is a homomorphism of formal groups. This completes the proof of the theorem. \Box

Remark 2.2. All of the above can be done for MU by replacing ${}^{*}\mathbb{Z}_{(p)}$ -algebra' by 'commutative ring', '*p*-typical formal group' by 'formal group' and '*BP*' by '*MU*'.

3. Structure maps

In [3] one can find a description of all the additional structure present in QBP_*BP_{2*} . Explicit formulae are given for the left and right units η_L and η_R , the counit, ε and the coproduct ψ . We show how to reproduce these in the spirit of Landweber from the above point of view. We can define natural maps:

$$\begin{split} \eta_{L} : TH(R) &\to TF(R) \quad (F, \phi, G) \mapsto F, \\ \eta_{R} : TH(R) &\to TF(R) \quad (F, \phi, G) \mapsto G, \\ \varepsilon : TF(R) &\to TH(R) \quad F \mapsto (F, \text{id}, F), \\ \psi : TH^{2}(R) &\to TH(R) \quad ((F, \phi, G), (G, \theta, H)) \mapsto (F, \theta \phi, H), \end{split}$$

turning the pair (TF, TH) into a semi-groupoid. (This is just a fancy name for a small category, but we stick with it to keep in line with our other objects.) Here $TH^2(R)$ is defined to be the set $\{(F, f, G) \times (F', f', G') \in TH(R) \times TH(R) | G = F'\}$. The above maps give us homomorphisms:

$$\eta_{L}: BP_{*} \rightarrow QBP_{*}BP_{2*},$$

$$\eta_{R}: BP_{*} \rightarrow QBP_{*}BP_{2*},$$

$$\varepsilon: QBP_{*}BP_{2*} \rightarrow BP_{*},$$

$$\psi: QBP_{*}BP_{2*} \rightarrow QBP_{*}BP_{2*} \otimes QBP_{*}BP_{2*},$$

turning (BP_*, QBP_*BP_{2*}) into a Hopf semi-algebroid over $\mathbb{Z}_{(p)}$, i.e. a semi-groupoid in the category of $\mathbb{Z}_{(p)}$ -coalgebras.

Proposition 3.1 (Boardman et al. [3]). Explicit formulae for the structure maps in QBP_*BP_{2*} are given by

$$\eta_{\rm L}(v_i) = v_i, \tag{3.1}$$

$$\eta_{\mathsf{R}}(v_i) = [v_i], \tag{3.2}$$

$$\varepsilon(1) = 1, \tag{3.3}$$

P.R. Turner / Journal of Pure and Applied Algebra 110 (1996) 91–100 97

$$\varepsilon(b_i) = 0 \quad \text{for } i > 0, \tag{3.4}$$

$$\varepsilon(v_i) = v_i, \tag{3.5}$$

$$\varepsilon(\overline{[v_i]}) = v_i, \tag{3.6}$$

$$\sum_{k\geq 1} \psi(b_k) x^k = \sum_{i\geq 1} \left(\sum_{j\geq 1} b_j x^j \right) \otimes b_i.$$
(3.7)

This last formula is to be thought of as a formal power series equality in the formal variable x. In the usual way the coefficients of x give the desired result.

Proof. To prove (3.1) observe that $\eta_{\rm L}$ must satisfy the following property. If

 $F_{\theta} \otimes f_{\theta} \otimes G_{\theta} : QBP_{\ast}BP_{2\ast} \to R$

represents $(F, f, G) \in TH(R)$, then

$$(F_{\theta} \otimes f_{\theta} \otimes G_{\theta}) \circ \eta_{\mathrm{L}} : BP_{\ast}QBP_{\ast}BP_{2\ast} \to R$$

represents F. It is clear that the left inclusion satisfies this condition, proving (3.1). The proof of (3.2) is similar.

To prove (3.3)-(3.6) observe that ε must satisfy the following. If $F_{\theta}: BP_* \to R$ represents $F \in TF(R)$ then $F_{\theta} \circ \varepsilon: QBP_*BP_{2*} \to BP_* \to R$ represents $(F, \operatorname{id}, F)$. So we must have $F_{\theta} \circ \varepsilon(v_i) = F_{\theta}(v_i)$ and $F_{\theta} \circ \varepsilon(\overline{[v_i]}) = F_{\theta}(v_i)$ and $F_{\theta} \circ \varepsilon(1) = 1$ and $F_{\theta} \circ \varepsilon(b_i) = 0$ for i > 0. Eqs. (3.3)-(3.6) now follow.

To prove (3.7) observe that ψ must satisfy the following. If

 $(F_{\theta} \otimes f_{\theta} \otimes G_{\theta}) \otimes (G_{\theta} \otimes g_{\theta} \otimes H_{\theta}) : QBP_{*}BP_{2*} \otimes QBP_{*}BP_{2*} \rightarrow R$

represents $((F, f, G), (G, g, H)) \in TH^2(R)$ then

 $((F_{\theta} \otimes f_{\theta} \otimes G_{\theta}) \otimes (G_{\theta} \otimes g_{\theta} \otimes H_{\theta})) \circ \psi : QBP_{*}BP_{2*} \to R$

represents (F, gf, G). Take R to be $QBP_*BP_{2*} \otimes QBP_*BP_{2*}$ and take

 $F_{\theta} \otimes f_{\theta} \otimes G_{\theta}: QBP_{\ast}BP_{2\ast} \to R = QBP_{\ast}BP_{2\ast} \otimes QBP_{\ast}BP_{2\ast}$

to be the left inclusion (so $f(x) = \sum_{i \ge 0} (b_i \otimes 1)x^i$) and take

$$G_{\theta} \otimes g_{\theta} \otimes H_{\theta}: QBP_{*}BP_{2*} \rightarrow R = QBP_{*}BP_{2*} \otimes QBP_{*}BP_{2*}$$

to be the right inclusion (so $g(x) = \sum_{j \ge 0} 1 \otimes b_j x^j$). In this case

 $(F_{\theta} \otimes f_{\theta} \otimes G_{\theta}) \otimes (G_{\theta} \otimes g_{\theta} \otimes H_{\theta}) = \mathrm{id}$

and so ψ represents (F, gf, G). In particular from the definition of the power series gf, we have

$$gf(x) = \sum_{i \ge 0} (gf)_{\theta}(b_i) x^i$$
(3.8)

$$=\sum_{i\geq 0}\psi(b_i)x^i.$$
(3.9)

However,

$$gf(x) = g(f(x)) \tag{3.10}$$

$$=\sum_{j\geq 0} 1\otimes b_j(f(x))^j \tag{3.11}$$

$$=\sum_{j\geq 0} \left(\sum_{i\geq 0} b_i x^i\right)^j \otimes b_j,\tag{3.12}$$

giving the result. \Box

In view of the above discussion we can combine Theorems 1.1 and 1.3 to give the following.

Theorem 3.2. The functor taking the $\mathbb{Z}_{(p)}$ -algebra R to the semi-groupoid (TF(R), TH(R)) is represented by the Hopf semi-algebroid (BP_*, QBP_*BP_{2*}) .

It is clear from the above and from Landweber's results on BP_*BP that the natural transformation

$$TI \rightarrow TH$$

given by the inclusion

 $TI(R) \hookrightarrow TH(R)$

of strict isomorphism into homomorphisms, is induced by the stabilisation map $QBP_*BP_{2*} \rightarrow BP_*BP$. Using the extra structure on QBP_*BP_{2*} and BP_*BP we see that the inclusion

 $(TF(R), TI(R)) \hookrightarrow (TF(R), TH(R))$

is a map of semi-groupoids and so the stabilisation map is a map of Hopf semialgebroids. This gives an alternative proof of the result in [3] that the stabilisation map is a map of BP_* -bimodules.

4. Multiplicative additive operations

Araki [2] has shown there is a bijection between the set of multiplicative stable *BP*-operations, Mult(BP), and certain typical curves over F_{BP} . The most convenient form of his result for the present context is as follows.

Theorem 4.1. (Araki [2]). There is a one-to-one correspondence

 $Mult(BP) \simeq \{(F, f, G) \in TI(BP_*) | F = F_{BP}\}.$

We shall extend this result to the unstable case. Given an additive unstable operation $\theta: BP^{k}(-) \to BP^{k}(-)$ we shall write θ_{l} for the looped operation $\Omega^{k-l}\theta: BP^{k-l}(-) \to BP^{k-l}(-)$.

Definition 4.2. An additive unstable operation $\theta: BP^k(-) \to BP^k(-)$ is said to be multiplicative if $\theta(xy) = \theta_j(x)\theta_i(y)$ for $x \in BP^i(X)$ and $y \in BP^j(X)$ with i + j = k. Let $UMult(BP) \subset PBP^*BP_{2*}$ be the set of all such operations.

Recall that PBP^*BP_{2*} comes equipped with a coproduct ψ_{\circ} given by $\psi_{\circ}(\theta) = \sum_{i+j=k} \psi_{\circ}^{ij}(\theta)$ where $\psi_{\circ}^{ij}: BP^*(BP_k) \to BP^*(BP_i \times BP_j)$ is induced from the map $BP_i \times BP_j \to BP_k$ coming from the ring structure in BP.

Lemma 4.3.

$$UMult(BP) = \{\theta \in PBP^*BP_{2*} | \psi_{\circ}(\theta) = \sum_{i+j=k} \theta_j \otimes \theta_i \}.$$

Proof. The coproduct condition is equivalent to demanding that $\psi_{\circ}^{i,j}(\theta) = \theta_j \otimes \theta_i$ for all i + j = k. In other words the following diagram commutes:

$$\begin{array}{c|c} \boldsymbol{BP}_i \times \boldsymbol{BP}_j \xrightarrow{\circ} \boldsymbol{BP}_k \\ & & \\ \theta_j \times \theta_i \\ & & \\ \boldsymbol{BP}_i \times \boldsymbol{BP}_j \xrightarrow{\circ} \boldsymbol{BP}_k \end{array}$$

This is precisely the diagram needed to show $\theta(xy) = \theta_i(x)\theta_i(y)$.

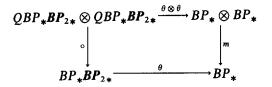
We can now characterise UMult(BP) in terms of formal group law homomorphisms as follows.

Proposition 4.4. There is a one-to-one correspondence

$$UMult(BP) \simeq \{(F, f, G) \in TH(BP_*) | F = F_{BP}\}.$$

Proof. Consider the set $Alg_{BP_*}(QBP_*BP_{2*}, BP_*)$ of (left) algebra homomorphisms from QBP_*BP_{2*} to BP_* . By definition this is the set of $\theta \in Mod_{BP_*}(QBP_*BP_{2*}, BP_*)$

such that there is commutative diagram



Using the duality $Mod_{BP_*}(QBP_*BP_{2*}, BP_*) = PBP^*BP_{2*}$ we can interpret θ as an element of PBP^*BP_{2*} . As such, the above diagram is equivalent to the condition $\psi_{\circ}(\theta) = \sum_{i+j=k} \theta_j \otimes \theta_i$; thus by Lemma 4.3 there is a one-to-one correspondence

 $UMult(BP) \simeq Alg_{BP_*}(QBP_*BP_{2*}, BP_*).$

It is clear, however, from Theorem 1.3 that $Alg_{BP_*}(QBP_*BP_{2*}, BP_*)$ is in one-to-one correspondence with the given subset of $TH(BP_*)$.

Acknowledgements

The author expresses thanks to the Alexander-von-Humboldt Stiftung for providing financial support and to Prof. Dieter Puppe for the invitation to Heidelberg.

References

- [1] S. Araki, Typical formal groups in complex cobordism and K-theory, Kyoto Lecture Notes 6 (1973).
- [2] S. Araki, Multiplicative operations in BP cohomology, Osaka J. Math. 12 (1975) 343-356.
- [3] J.M. Boardman D.C. Johnson and W.S. Wilson, Unstable operations in generalized cohomology, in: I.M. James, Ed., Handbook of Algebraic Topology (Elsevier, Amsterdam, 1995).
- [4] P.S. Landweber, BP BP and typical formal groups, Osaka J. Math. 12 (1975) 357-363.
- [5] D.C. Ravenel and W.S. Wilson, The Hopf ring for complex cobordism, J. Pure Appl. Algebra 9 (1977) 241-280.